skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piga, Leonardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resource control in heterogeneous computers built with subsystems from different vendors is challenging. There is a tension between the need to quickly generate local decisions in each subsystem and the desire to coordinate the different subsystems for global optimization. In practice, global coordination among subsystems is considered hard, and current commercial systems use centralized controllers. The result is high response time and high design cost due to lack of modularity. To control emerging heterogeneous computers effectively, we propose a new control framework called Tangram that is fast, glob- ally coordinated, and modular. Tangram introduces a new formal controller that combines multiple engines for optimization and safety, and has a standard interface. Building the controller for a subsystem requires knowing only about that subsystem. As a het- erogeneous computer is assembled, the controllers in the different subsystems are connected hierarchically, exchanging standard co- ordination signals. To demonstrate Tangram, we prototype it in a heterogeneous server that we assemble using components from multiple vendors. Compared to state-of-the-art control, Tangram re- duces, on average, the execution time of heterogeneous applications by 31% and their energy-delay product by 39%. 
    more » « less